Modeling and Identification of Hammerstein System by using Triangular Basis Functions

ثبت نشده
چکیده

This paper deals with modeling and parameter identification of nonlinear systems described by Hammerstein model having Piecewise nonlinear characteristics such as Dead-zone nonlinearity characteristic. The simultaneous use of both an easy decomposition technique and the triangular basis functions leads to a particular form of Hammerstein model. The approximation by using Triangular basis functions for the description of the static nonlinear block conducts to a linear regressor model, so that least squares techniques can be used for the parameter estimation. Singular Values Decomposition (SVD) technique has been applied to separate the coupled parameters. The proposed approach has been efficiently tested on academic examples of simulation.. Keywords—Identification, Hammerstein model, Piecewise nonlinear characteristic, Dead-zone nonlinearity, Triangular basis functions, Singular Values Decomposition

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Hammerstein Systems using Triangular basis Functions

A new identification method is proposed for Hammerstein systems in presence of dead zone input nonlinearities. To describe and identify the nonlinear system, a new decomposition technique using the triangular basis functions is employed. Then a parameterized model is derived to represent the entire system. The approximation by Triangular basis functions for the description of the static nonline...

متن کامل

A New Hammerstein Model for Non-Linear System Identification

In the present work a newer type of black box nonlinear model in Hammerstein structure is proposed. The model has Wavelet Network coupled with Orthonormal Basis Functions which is capable of modeling a class of non-linear systems with acceptable accuracy. Wavelet basis functions have the property of localization in both the time and frequency domains which enables wavelet networks to approximat...

متن کامل

Hybrid of Rationalized Haar Functions Method for Mixed Hammerstein Integral Equations

A numerical method for solving nonlinear mixed Hammerstein integral equations is presented in this paper. The method is based upon hybrid of rationalized Haar functions approximations. The properties of hybrid functions which are the combinations of block-pulse functions and rationalized Haar functions are first presented. The Newton-Cotes nodes and Newton-Cotes integration method are then util...

متن کامل

Orthonormal Basis and Radial Basis Functions in Modeling and Identification of Nonlinear Block-Oriented Systems

Nonlinear block-oriented systems, including the Hammerstein, Wiener and feedbacknonlinear systems have attracted considerable research interest both from the industrial and academic environments (Bai, 1998), (Greblicki, 1989), (Latawiec, 2004), (Latawiec et al., 2003), (Latawiec et al., 2004), (Pearson & Pottman, 2000). It is well known that orthonormal basis functions (OBF) (Bokor et al., 1999...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012